Monsalvo, I., Lin, J. and Kovinich, N., 2024. Phytoalexin Gene Regulation in Arabidopsis thaliana-On the Verge of a Paradigm Shift? Current Plant Biology, p.100367.
Lin, J., Wi, D., Ly, M., Jahan, M. A., Pullano, S., Martirosyan, I., Kovinich, N (2023) Soybean Hairy Root Transformation for the Analysis of Gene Function. J. Vis. Exp. (195), e65485, doi:10.3791/65485
Lin J, Monsalvo I, Ly M, Jahan MA, Wi D, Martirosyan I, Kovinich N (2023) RNA-Seq Dissects Incomplete Activation of Phytoalexin Biosynthesis by the Soybean Transcription Factors GmMYB29A2 and GmNAC42-1. Plants. 12(3):545. https://doi.org/10.3390/plants12030545
Lin J**, Liu D, Wang X, Ahmed S**, Li M, Kovinich N, Sui S (2021) Transgene CpNAC68 from wintersweet (Chimonanthus praecox) improves Arabidopsis survival of multiple abiotic stresses. Plants, 10 (7), 1403.
Ahmed S**, Gao X, Jahan Md A*, Adams M*, Wu N, Kovinich N (2021). Nanoparticle-Based Genetic Transformation of Cannabis sativa. Journal of Biotechnology, 326(1), pp. 48-51.
Ahmed S**, Kovinich N (2020). Regulation of Phytoalexin Biosynthesis for Agriculture and Human Health. Phytochemistry Reviews. DOI: 10.1007/s11101-020-09691-8
Jahan Md A*, Harris B*, Lowery M*, Infante AM, Percifield RJ, Ammer AG, Kovinich N (2020). Glyceollin Transcription Factor GmMYB29A2 Regulates Soybean Resistance to Phytophthora sojae. Plant Physiology, 183(2), pp.530-546.
Kovinich N (2019). Combining Biocatalysts and Semi-Synthesis to (Bio) Synthesize Recalcitrant Pharmaceuticals. Archives in Biomedical Engineering & Biotechnology. Accepted May 2019.
Jahan Md A, Harris B, Lowery M, Coburn K, Infante AM, Percifield RJ, Ammer AG, Kovinich N (2019). The NAC Transcription Factor GmNAC42-1 Regulates Glyceollin Phytoalexin Biosynthesis in Soybean. BMC Genomics 20:149.
Dabeek WM, Kovinich N, Walsh C, Marra VM (2019). Characterization and Quantification of Major Flavonol Glycosides in Ramps (Allium tricoccum). Molecules 24(18), 3281.
Jahan Md A, Kovinich N (2019). Acidity stress for the systemic elicitation of glyceollin phytoalexins in soybean plants. Plant Signaling & Behavior. https://doi.org/10.1080/15592324.2019.1604018.
Hohenstein J, Studham ME, Klein A, Kovinich N, Barry K, Lee Y-J, MacIntosh GC (2018). Transcriptional and chemical changes in soybean leaves in response to long-term aphid colonization. Frontiers in Plant Science 10, 310.
N., Durkin P. (2018). Hormone deficient mutants have distinct flavonoid proportion fingerprints in response to abiotic stress. Plant Signaling & Behavior DOI: 10.1080/15592324.2018.1542241.
Kovinich N, Wang Y, Adegboye J, Chanoca A, Otegui M, Durkin P and Grotewold E (2018). Arabidopsis MATE45 Antagonizes Local Abscisic Acid Signaling to Mediate Development and Abiotic Stress Responses. Plant Direct 2018: 1-17.
Gary S, Adegboye J, Popp B, Cocuron JC, Woodrum B, Kovinich N (2018). Combining semi-synthesis with plant and microbial biocatalysis: new frontiers in producing a chemical arsenal against cancer. RSC Advances 8: 21332-21339
Farrell KC, Jahan Md A, Kovinich N (2017). Distinct Mechanisms of Biotic and Chemical Elicitors enable Additive Elicitation of the Anticancer Phytoalexin Glyceollin I. Molecules 22 (8), 1261-1273
Chanoca A, Burkel B, Kovinich N, Grotewold E, Eliceiri KW, Otegui MS (2016). Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins. The Plant Journal 88 (5), 895-903
Chanoca A, Kovinich N, Grotewold E, Otegui M. (2015). Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism. The Plant Cell. DOI: tpc.15.00589. (Cover article for The Plant Cell, and highlighted in Nature)
Kovinich N, Kayanja G, Chanoca A, Otegui M, Grotewold E (2015). Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signaling & Behavior DOI 10.1080/15592324.2015.1027850.
Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui M, Grotewold E (2014). Not all anthocyanins are born equal: Distinct patterns induced by stress in Arabidopsis. Planta DOI 10.1007/s00425-014-2079- 1.
Kovinich N, Saleem A, Arnason JT, and Miki B. (2012a). Coloring genetically modified soybean grains with anthocyanins by suppression of the proanthocyanidin genes ANR1 and ANR2. Transgenic research DOI: 10.1007/s11248-011- 9566-y.
Kovinich N, Saleem A, Arnason JT, Miki B. (2012b). Identification of two anthocyanidin reductase genes and three red-brown soybean accessions with reduced anthocyanidin reductase 1 mRNA, activity, and seed coat proanthocyanidin amounts. Journal of agricultural and food chemistry 60: 574-84.
Schnell S, Labbé H, Kovinich N, Manabe Y, Miki B. (2012c). Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic research DOI: 10.1007/s11248-012- 9597-z.
Kovinich N, Saleem A, Arnason JT, Miki B (2011a) Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes. BMC Genomics 12: 381.
Kovinich N, Arnason JT, DeLuca V, Miki B (2011b) Coloring Soybeans with Anthocyanins? In DR Gang, ed, Recent Advances in Phytochemistry, Vol 41. Springer, pp 47-57. ISBN: 978-1- 4419-6961-3.
Kovinich N, Saleem A, Arnason JT, Miki B (2010) Functional characterization of a UDP-glucose:flavonoid 3-O-glucosyltransferase from the seed coat of black soybean (Glycine max (L.) Merr.). Phytochemistry 71: 1253-1263